Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells.
نویسندگان
چکیده
Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.
منابع مشابه
CCN2/Connective Tissue Growth Factor Is Essential for Pericyte Adhesion and Endothelial Basement Membrane Formation during Angiogenesis
CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also h...
متن کاملUp-regulation of connective tissue growth factor in endothelial cells by the microtubule-destabilizing agent combretastatin A-4.
Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of ot...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملEffect of different concentrations of leukemia inhibitory factor on gene expression of vascular endothelial growth factor-A in trophoblast Tumor Cell Line
Background: Several studies have shown that leukemia inhibitory factor (LIF) is one of the most important cytokinesparticipating in the process of embryo implantation and pregnancy, while, the role of this factor on vascular endothelialfactor-A (VEGF-A), as one of the most important angiogenic factor, has not been fully investigated yet. The aimof this study was to evaluate th...
متن کاملAnti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat
Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2006